The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions.

نویسندگان

  • L L Chen
  • D B Folsom
  • C P Ko
چکیده

The question of whether the synaptic extracellular matrix undergoes remodeling and how this remodeling is related to nerve terminal plasticity was examined in living neuromuscular junctions of adult frogs. Sartorius muscles were double stained with a fluorescent nerve terminal dye 4-(4-diethylamino-styryl)-N-methylpyridinium iodide (4-Di-2-Asp) and rhodamine-tagged peanut agglutinin (PNA) which recognizes synaptic extracellular matrix. Both nerve terminals and synaptic extracellular matrix in 200 identified normal junctions were visualized in vivo two or three times over a period of 2.6-6 months. The majority of neuromuscular junctions (NMJs) showed remodeling of both nerve terminals and synaptic extracellular matrix. Only 2.5% showed no changes in either synaptic element. The most commonly seen remodeling involved correlated changes in both nerve terminals and synaptic extracellular matrix. In this large group, while some junctions (20%) showed overall proportionate changes in all branches, most junctions (68%) showed disproportionate extension and/or retraction of some but not all individual branches. Another group of NMJs (9.5%) showed mismatched changes in the nerve terminal and synaptic extracellular matrix. In this group, some NMJs showed a decrease in the nerve terminal length without a corresponding reduction in synaptic extracellular matrix length. In other junctions that displayed extension of branches, the PNA-stained matrix was longer than the distal tip of the nerve terminal. Morphometric analysis indicated an average increase of 15.6% in total nerve terminal length and 13.6% in total synaptic extracellular matrix length. Although almost all NMJs displayed remodeling in at least one branch, about 50% of the 2201 individual branches examined did not show changes. The average change was 8.9% growth in the length of individual nerve terminal branches and 8.3% growth in the length of individual branches of synaptic extracellular matrix. There was no significant difference in the morphometry between the repeatedly observed junctions and the previously unobserved control junctions. Furthermore, junctions in which the synaptic extracellular matrix was longer than the nerve terminal also were seen in control as well as in experimental muscles. Cases where the nerve terminals were longer than the synaptic extracellular matrix were never observed in newly arising junctional branches. The present study has shown extensive remodeling in not only the nerve terminal but also the synaptic extracellular matrix in adult living frog NMJs. Results suggest that nerve terminals retract before the synaptic extracellular matrix. A hypothesis that extension of synaptic extracellular matrix precedes nerve terminal growth during synaptic remodeling is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions.

Remodeling of the synaptic extracellular matrix (ECM) and its dynamic relationship with nerve terminal plasticity have been demonstrated in normal frog neuromuscular junctions (NMJs) in vivo (Chen et al., 1991). Our previous work has led to a hypothesis that extension of synaptic ECM precedes nerve terminal growth during synaptic remodeling. To test this hypothesis, the present study examined t...

متن کامل

Precision of reinnervation and synaptic remodeling observed in neuromuscular junctions of living frogs.

Repeated in vivo observations were used to study regenerated nerve terminals in neuromuscular junctions of the adult frog Rana pipiens. Sartorius junctions in living animals were stained with the fluorescent vital dye RH414 and viewed with video fluorescence microscopy. Each junction was observed in the intact muscle and then again 7, 10, and 13 weeks after nerve crush. At 13 weeks, junctions w...

متن کامل

Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions.

This work aimed to examine the mechanism of synaptic remodeling using repeated in vivo observations, followed by electron microscopy, of identified frog neuromuscular junctions (NMJs). Our previous light microscopic studies suggested that extension of synaptic extracellular matrix (ECM) precedes, and may play a role in, nerve terminal (NT) growth during synaptic remodeling. To test this hypothe...

متن کامل

Synaptic activity and connective tissue remodeling in denervated frog muscle

Denervation of skeletal muscle results in dramatic remodeling of the cellular and molecular composition of the muscle connective tissue. This remodeling is concentrated in muscle near neuromuscular junctions and involves the accumulation of interstitial cells and several extracellular matrix molecules. Given the role of extracellular matrix in neurite outgrowth and synaptogenesis, we predict th...

متن کامل

Acetylcholinesterase from the motor nerve terminal accumulates on the synaptic basal lamina of the myofiber

Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 1991